Name:	Date:
Ou	r Amazing, Powerful Sun Worksheet
This worksheet will step you through how to calculate the: (1) Power of the Sun and (2) lifetime of the Sun.	
and is given by: where P is the energy rate output of th constant (5.670 x $10^{-8}W$ $m^{-2}K^{-4}$).	relate the temperature of a planetary object (like the Sun) to its energy output $P=4\pi r^2\sigma T^4$ ne object, T is it's temperature, r is it's radius, and σ is the Stefan Boltzman If the temperature and radius of the Sun are approximately $5800~K$ (hot!!) and the rate of energy output of the Sun in Watts.
Solution:	
2. The Lifetime of the Sun	
We learned that the energy emitted from are transformed into one helium atoms. We can assume that	om the Sun is formed through nuclear fusion. Specifically, four hydrogen atoms. From the Periodic Table of Elements, one helium atom has less mass than four the Sun will "die" when it runs out of energy.
as $E = 0.007 mc^2$, where c is the spee	the original mass is lost. Therefore, we can express the total energy, E , of the Sured of light $(c=299,792,458\ m\ s^{-1})$ and M is the mass in the sun that is capable ass of the Sun is $2x10^{30}$ kg and only the hottest center (about 10%) can actually be total Energy of the Sun.